Wiki

Reso-nance numérique | Arts et cultures libres

Outils du site


projets:surfaces:accueil

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
Prochaine révision Les deux révisions suivantes
projets:surfaces:accueil [2015/05/17 00:25]
alba [Formules]
projets:surfaces:accueil [2015/05/17 16:59]
alba [Code]
Ligne 43: Ligne 43:
 ===== Formules ===== ===== Formules =====
  
-Dans la table ci-dessus, toutes les formules implicites proviennent de la galerie Herwig Hauser Classic sur Imaginary.org, avec éventuellement quelques constantes de rajoutées. Les paramétrisations correspondantes ont été calculées par Alba. L'intérêt d'une paramétrisation explicite pour la construction d'un modèle 3D est que les modèles qui en sortent sont plus propres, car approcher numériquement la solution d'une équation comporte des erreurs beaucoup plus grosses que d'évaluer une fonction. C'est particulièrement vrai dans le cas des équations polynomiales et l'évaluation des polynômes.+Dans la table ci-dessus, toutes les formules implicites proviennent des contributions de Herwig Hauser sur Imaginary.org (galerie Herwig Hauser classic et l'ensemble de surfaces algébriques de l'institut Forwiss), avec éventuellement quelques constantes de rajoutées. Les paramétrisations correspondantes ont été calculées par Alba. L'intérêt d'une paramétrisation explicite pour la construction d'un modèle 3D est que les modèles qui en sortent sont plus propres, car approcher numériquement la solution d'une équation comporte des erreurs beaucoup plus grosses que d'évaluer une fonction. C'est particulièrement vrai dans le cas des équations polynomiales et l'évaluation des polynômes.
  
 ^Nom^Équation polynomiale^Paramétrisation(s)^  ^Nom^Équation polynomiale^Paramétrisation(s)^ 
Ligne 49: Ligne 49:
 ^Limão^$x^2=y^3z^3$^$\left\{\begin{array}{rcl}x&=&u^3v^3\\y&=&\pm u^2\\z&=&\pm v^2\end{array}\right.$^  ^Limão^$x^2=y^3z^3$^$\left\{\begin{array}{rcl}x&=&u^3v^3\\y&=&\pm u^2\\z&=&\pm v^2\end{array}\right.$^ 
 ^Vis-à-vis^$x^2+y^2+y^4+z^3=x^3+z^4$^ ^ ^ ^Vis-à-vis^$x^2+y^2+y^4+z^3=x^3+z^4$^ ^ ^
-^Calypso^$x^2+y^2z=z^2$^$\left\{\begin{array}{rcl}x&=&v^2\sin(u)&\\y&=&v\cos(u)&\\z&=&v^2\end{array}\right.$^$\left\{\begin{array}{rcl}x&=&v^2\cos(u)&\\y&=&v\sqrt(2\sin(u))&\\z&=&v^2(\sin(u)-1)\end{array}\right.$^ +^Calypso^$x^2+y^2z=z^2$^$\left\{\begin{array}{rcl}x&=&v^2\sin(u)&\\y&=&v\cos(u)&\\z&=&v^2\end{array}\right.$^$\left\{\begin{array}{rcl}x&=&v^2\cos(u)&\\y&=&v\sqrt{2\sin(u)}&\\z&=&v^2(\sin(u)-1)\end{array}\right.$^ 
-^Calyx^$x^2+y^2z^3=z^4$^$\left\{\begin{array}{rcl}x&=&v^4\sin(u)&\\y&=&v\cos(u)&\\z&=&v^2\end{array}\right.$^$\left\{\begin{array}{rcl}x&=&v^4\sin(u)(\cos(u)-1)&\\y&=&v\sqrt(2\cos(u))&\\z&=&v^2(\cos(u)-1)\end{array}\right.$^+^Calyx^$x^2+y^2z^3=z^4$^$\left\{\begin{array}{rcl}x&=&v^4\sin(u)&\\y&=&v\cos(u)&\\z&=&v^2\end{array}\right.$^$\left\{\begin{array}{rcl}x&=&v^4\sin(u)(\cos(u)-1)&\\y&=&v\sqrt{2\cos(u)}&\\z&=&v^2(\cos(u)-1)\end{array}\right.$^
 ^Daisy^$(x^2-y^3)^2=(z^2-y^2)^3$^$\left\{\begin{array}{rcl}x&=&v^3(\sin(u)+(\sin^2(u)-1) (\sin(u)+\cos(u)))^2\\y&=&v^2 (\sin(u)+(\sin^2(u)-1) (\sin(u)+\cos(u))) \sin(u) \\z&=&v^2(\sin^3(u)-\cos^3(u))\end{array}\right.$^  ^Daisy^$(x^2-y^3)^2=(z^2-y^2)^3$^$\left\{\begin{array}{rcl}x&=&v^3(\sin(u)+(\sin^2(u)-1) (\sin(u)+\cos(u)))^2\\y&=&v^2 (\sin(u)+(\sin^2(u)-1) (\sin(u)+\cos(u))) \sin(u) \\z&=&v^2(\sin^3(u)-\cos^3(u))\end{array}\right.$^ 
 ^Diabolo^$x^2=(y^2+z^2)^2$^$\left\{\begin{array}{rcl}x&=&\pm(u^2+v^2)\\y&=&u\\z&=&v\end{array}\right.$^ ^Diabolo^$x^2=(y^2+z^2)^2$^$\left\{\begin{array}{rcl}x&=&\pm(u^2+v^2)\\y&=&u\\z&=&v\end{array}\right.$^
Ligne 60: Ligne 60:
 ^Herz^$x^2z^2+z^4=y^2+z^3$^$\left\{\begin{array}{rcl}x&=&\frac12v\sin(u)\\y&=&\pm\frac12\sqrt{v^2-1}(1+v\cos(u))\\z&=&\frac12(1+v\cos(u))\end{array}\right.$^  ^Herz^$x^2z^2+z^4=y^2+z^3$^$\left\{\begin{array}{rcl}x&=&\frac12v\sin(u)\\y&=&\pm\frac12\sqrt{v^2-1}(1+v\cos(u))\\z&=&\frac12(1+v\cos(u))\end{array}\right.$^ 
 ^Himmel & Hölle^$x^2=y^2z^2$^$\left\{\begin{array}{rcl}x&=&\pm uv\\y&=&u\\z&=&v\end{array}\right.$^  ^Himmel & Hölle^$x^2=y^2z^2$^$\left\{\begin{array}{rcl}x&=&\pm uv\\y&=&u\\z&=&v\end{array}\right.$^ 
-^Kolibri^$x^2=y^2z^2+z^3$^$\left\{\begin{array}{rcl}x&=&(u^2-v^2)\\y&=&v\\z&=&u^2-v^2\end{array}\right.$^ +^Kolibri^$x^2=y^2z^2+z^3$^$\left\{\begin{array}{rcl}x&=&u(u^2-v^2)\\y&=&v\\z&=&u^2-v^2\end{array}\right.$^ 
 ^Kreisel^$60(x^2+y^2)z^4=(60-x^2-y^2-z^2)^3$^$\left\{\begin{array}{rcl}x&=&\sqrt{\frac{60}{1+60(v^3+v^2)}}\cos(u)\\y&=&\sqrt{\frac{60}{1+60(v^3+v^2)}}\sin(u)\\z&=&\pm60\sqrt{\frac{v^3}{1+60(v^3+v^2)}}\end{array}\right.$^ ^Kreisel^$60(x^2+y^2)z^4=(60-x^2-y^2-z^2)^3$^$\left\{\begin{array}{rcl}x&=&\sqrt{\frac{60}{1+60(v^3+v^2)}}\cos(u)\\y&=&\sqrt{\frac{60}{1+60(v^3+v^2)}}\sin(u)\\z&=&\pm60\sqrt{\frac{v^3}{1+60(v^3+v^2)}}\end{array}\right.$^
 ^Miau^$x^2yz+x^2z^2+2y^3z+3y^3=0$^$ $^  ^Miau^$x^2yz+x^2z^2+2y^3z+3y^3=0$^$ $^ 
Ligne 66: Ligne 66:
 ^Seepferdchen^$(x^2-y^3)^2=(x+y^2)z^3$^$ $^  ^Seepferdchen^$(x^2-y^3)^2=(x+y^2)z^3$^$ $^ 
 ^Solitude^$x^2yz+xy^2+y^3+y^3z=x^2z^2$^$ $^  ^Solitude^$x^2yz+xy^2+y^3+y^3z=x^2z^2$^$ $^ 
-^Tanz^$2x^4=x^2+y^2z^2$^$\left\{\begin{array}{rcl}x&=&\pm\frac{1}{\sqrt{2}}\cosh(u)\\y&=&v\sinh(u)\\z&=&\frac{1}{\sqrt{2}v}\cosh(u)\end{array}\right.$^ +^Tanz^$2x^4=x^2+y^2z^2$^$\left\{\begin{array}{rcl}x&=&\pm\frac12\sqrt{1+\sqrt{1+2u^2v^2}}\\y&=&\frac1{\sqrt{2}}u\\z&=&\frac1{\sqrt{2}}v\end{array}\right.$^ 
 ^Taube^$256z^3 − 128x^2z^2+16x^4z+144xy^2z−4x^3y^2−27y^4=0$^$\left\{\begin{array}{rcl}x&=&3(u^2-v^2)\\y&=&\pm2v(3u^2-v^2)\\z&=&3u^2v^2\end{array}\right.$^$\left\{\begin{array}{rcl}x&=&-3(u^2+v^2)\\y&=&\pm2v(3u^2+v^2)\\z&=&-3u^2v^2\end{array}\right.$^  ^Taube^$256z^3 − 128x^2z^2+16x^4z+144xy^2z−4x^3y^2−27y^4=0$^$\left\{\begin{array}{rcl}x&=&3(u^2-v^2)\\y&=&\pm2v(3u^2-v^2)\\z&=&3u^2v^2\end{array}\right.$^$\left\{\begin{array}{rcl}x&=&-3(u^2+v^2)\\y&=&\pm2v(3u^2+v^2)\\z&=&-3u^2v^2\end{array}\right.$^ 
 ^Tülle^$yz\cdot (x^2+y-z)=0$^$\left\{\begin{array}{rcl}x&=&u\\y&=&v\\z&=&u^2+v\end{array}\right.$^$\left\{\begin{array}{rcl}x&=&u\\y\text{ ou }z&=&v\\y\text{ ou }z&=&0\end{array}\right.$^  ^Tülle^$yz\cdot (x^2+y-z)=0$^$\left\{\begin{array}{rcl}x&=&u\\y&=&v\\z&=&u^2+v\end{array}\right.$^$\left\{\begin{array}{rcl}x&=&u\\y\text{ ou }z&=&v\\y\text{ ou }z&=&0\end{array}\right.$^ 
 ^Zeck^$x^2+y^2=z^3\cdot(1-z)$^$\left\{\begin{array}{rcl}x&=&\sin(v)\cos^3(v)\cos(u)\\y&=&\sin(v)\cos^3(v)\sin(u)\\z&=&\cos^2(v)\end{array}\right.$^ ^Zeck^$x^2+y^2=z^3\cdot(1-z)$^$\left\{\begin{array}{rcl}x&=&\sin(v)\cos^3(v)\cos(u)\\y&=&\sin(v)\cos^3(v)\sin(u)\\z&=&\cos^2(v)\end{array}\right.$^
-^...^$ $^$\left\{\begin{array}{rcl}x&=&\\y&=&\\z&=&\end{array}\right.$^ +^Spitz^$(y^2-x^2-z^2)^3=27x^2y^3z^2$^$\left\{\begin{array}{rcl}x&=&4v^3\cos(u)\\y&=&6v^2\sqrt[3]{\sin^2(2u)}-\sqrt{4v^2\sqrt[3]{sin(2u)^4}+16v^6}\\z&=&4v^3\sin(u)\end{array}\right.$^  
 +^Schneeflocke^$x^3+y^2z^3+yz^4=0$^$\left\{\begin{array}{rcl}x&=&\pm(u-v)\sqrt[3]{uv}\\y&=&u\\z&=&v-u\end{array}\right.$^  
 + 
 +===== Code ===== 
 +Ci-dessus, un script pour MathMod contenant toutes les surfaces listées dans la section Formules de ce wiki, ainsi qu'une paramétrisation pour la plupart d'entre elles.  
 + 
 +<code javascript>{ "MathModels": [  
 +{ "Iso3D": { "Component": [ "Zitrus" ], "Fxyz": [ "9*(x^2+z^2)-64*y^3*(1-y)^3" ], "Name": [ "Zitrus" ], "Xmax": [ "1/3" ], "Xmin": [ "-1/3" ], "Ymax": [ "1" ], "Ymin": [ "0" ], "Zmax": [ "1/3" ], "Zmin": [ "-1/3" ] } },  
 +{ "Param3D": { "Component": [ "Zitrus P" ], "Description": [ "Parametric Zitrus" ], "Fx": [ "(8/3)*sin(u)^3*cos(u)^3*cos(v)" ], "Fy": [ "cos(u)^2" ], "Fz": [ "(8/3)*sin(u)^3*cos(u)^3*sin(v)" ], "Name": [ "Zitrus P" ], "Umax": [ "pi/2" ], "Umin": [ "0" ], "Vmax": [ "2*pi" ], "Vmin": [ "0" ] } },  
 +{ "Iso3D": { "Component": [ "Limão" ], "Fxyz": [ "x^2-y^3*z^3" ], "Name": [ "Limão" ], "Xmax": [ "1" ], "Xmin": [ "-1" ], "Ymax": [ "1" ], "Ymin": [ "-1" ], "Zmax": [ "1" ], "Zmin": [ "-1" ] } },  
 +{ "Param3D": { "Component": ["Limão_+","Limão_-"], "Description": ["Parametric Limão"], "Fx": ["u^3*v^3","u^3*v^3"], "Fy": ["v^2","-v^2"], "Fz": ["u^2","-u^2"], "Name": ["Limão P"], "Umax": ["1","1"], "Umin": ["-1","-1"], "Vmax": ["1","1"], "Vmin": ["-1","-1"] } },  
 +{ "Iso3D": { "Component": [ "Vis-à-vis" ], "Fxyz": [ "x^2-x^3+y^2+y^4+z^3-z^4" ], "Name": [ "Vis-à-vis" ], "Xmax": [ "1.73" ], "Xmin": [ "-1.73" ], "Ymax": [ "2" ], "Ymin": [ "-2" ], "Zmax": [ "1.65" ], "Zmin": [ "-1.65" ] } },  
 +{ "Iso3D": { "Component": [ "Calypso" ], "Fxyz": [ "x^2+y^2*z-z^2" ], "Name": [ "Calypso" ], "Xmax": [ "2.55" ], "Xmin": [ "-2.55" ], "Ymax": [ "2.55" ], "Ymin": [ "-2.55" ], "Zmax": [ "2.55" ], "Zmin": [ "-2.55" ] } },  
 +{ "Param3D": { "Component": [ "CalypsoPolar_+", "CalypsoPolar_-" ], "Description": [ "Calypso parametrized polar" ], "Fx": [ "v^2*sin(u)", "v^2*cos(u)" ], "Fy": [ "v*cos(u)", "v*sqrt(2*sin(u))" ], "Fz": [ "v^2", "v^2*(sin(u)-1)" ], "Name": [ "Calypso polar" ], "Umax": [ "2*pi", "pi" ], "Umin": [ "0", "0" ], "Vmax": [ "1", "1" ], "Vmin": [ "0", "-1" ] } },  
 +{ "Iso3D": { "Component": [ "Calyx" ], "Fxyz": [ "x^2+y^2*z^3-z^4" ], "Name": [ "Calyx" ], "Xmax": [ "4" ], "Xmin": [ "-4" ], "Ymax": [ "2" ], "Ymin": [ "-2" ], "Zmax": [ "2" ], "Zmin": [ "-2" ] } },  
 +{ "Param3D": { "Component": [ "CalyxPolar_+", "CalyxPolar_-" ], "Description": [ "Calyx parametrized polar" ], "Fx": [ "v^4*sin(u)", "v^4*sin(u)*(cos(u)-1)" ], "Fy": [ "v*cos(u)", "v*sqrt(2*cos(u))" ], "Fz": [ "v^2", "v^2*(cos(u)-1)" ], "Name": [ "Calyx polar" ], "Umax": [ "2*pi", "pi/2" ], "Umin": [ "0", "-pi/2" ], "Vmax": [ "1", "1" ], "Vmin": [ "0", "-1" ] } },  
 +{ "Iso3D": { "Component": [ "Daisy" ], "Fxyz": [ "(x^2-y^3)^2-(z^2-y^2)^3" ], "Name": [ "Daisy" ], "Xmax": [ "0.1" ], "Xmin": [ "-0.1" ], "Ymax": [ "0.21" ], "Ymin": [ "-0.15" ], "Zmax": [ "0.21" ], "Zmin": [ "-0.21" ] } },  
 +{ "Param3D": { "Description": ["Parametric Daisy"], "Name": ["Daisy P"], "Component": ["Daisy_++","Daisy_+-","Daisy_-+","Daisy_--"], "Fx": ["sqrt((v+u)^3-u^3)","sqrt((v-u)^3+u^3)","-sqrt((v-u)^3+u^3)","-sqrt((v+u)^3-u^3)"], "Fy": ["-u","u","u","-u"], "Fz": ["sqrt((v+u)^2+u^2)","-sqrt((v-u)^2+u^2)","sqrt((v-u)^2+u^2)","-sqrt((v+u)^2+u^2)"], "Umax": [ "1", "1", "1", "1"], "Umin": ["-1","-1","-1","-1"], "Vmax": [ "1", "1", "1", "1"], "Vmin": [ "0", "0", "0", "0"] } },  
 +{ "Iso3D": { "Component": [ "Diabolo" ], "Fxyz": [ "x^2-(y^2+z^2)^2" ], "Name": [ "Diabolo" ], "Xmax": [ "1" ], "Xmin": [ "-1" ], "Ymax": [ "1" ], "Ymin": [ "-1" ], "Zmax": [ "1" ], "Zmin": [ "-1" ] } },  
 +{ "Param3D": { "Component": [ "DiaboloP_+","DiaboloP_-" ], "Description": [ "Parametric diabolo" ], "Fx": [ "u^2","-u^2" ], "Fy": [ "u*cos(v)","u*cos(v)" ], "Fz": [ "u*sin(v)","u*sin(v)" ], "Name": [ "Diabolo P" ], "Umax": [ "pi/2","0" ], "Umin": [ "0","-pi/2" ], "Vmax": [ "2*pi","2*pi" ], "Vmin": [ "0","0" ] } },  
 +{ "Iso3D": { "Component": [ "Ding Dong" ], "Fxyz": [ "x^2+y^2+z^3-z^2" ], "Name": [ "Ding Dong" ], "Xmax": [ "1.34" ], "Xmin": [ "-1.34" ], "Ymax": [ "1.34" ], "Ymin": [ "-1.34" ], "Zmax": [ "1" ], "Zmin": [ "-0.85" ] } },  
 +{ "Param3D": { "Component": [ "DingDongP_+", "DingDongP_-" ], "Description": [ "Parametric ding dong" ], "Fx": [ "2/(3*sqrt(3))*sin(3*v/2)*cos(u)", "-(v^6+1)/(3*sqrt(3)*v^3)*cos(u)" ], "Fy": [ "2/(3*sqrt(3))*sin(3*v/2)*sin(u)", "-(v^6+1)/(3*sqrt(3)*v^3)*sin(u)" ], "Fz": [ "(1+2*cos(v))/3", "-(1-v^2+v^4)/(3*v^2)" ], "Name": [ "Ding Dong P" ], "Umax": [ "2*pi", "2*pi" ], "Umin": [ "0", "0" ], "Vmax": [ "pi", "1.7" ], "Vmin": [ "0", "1"] } }, 
 +{ "Iso3D": { "Component": [ "Distel" ], "Fxyz": [ "x^2+y^2+z^2+1500*(x^2+y^2)*(x^2+z^2)*(y^2+z^2)-1" ], "Name": [ "Distel" ], "Xmax": [ "1" ], "Xmin": [ "-1" ], "Ymax": [ "1" ], "Ymin": [ "-1" ], "Zmax": [ "1" ], "Zmin": [ "-1" ] } },  
 +{ "Iso3D": { "Component": [ "Dullo" ], "Fxyz": [ "(x^2+y^2+z^2)^2-(x^2+y^2)" ], "Name": [ "Dullo" ], "Xmax": [ "1" ], "Xmin": [ "-1" ], "Ymax": [ "1" ], "Ymin": [ "-1" ], "Zmax": [ "0.5" ], "Zmin": [ "-0.5" ] } },  
 +{ "Param3D": { "Component": [ "Dullo P" ], "Description": [ "Parametric dullo" ], "Fx": [ "(1-cos(u))*cos(v)/2" ], "Fy": [ "(1-cos(u))*sin(v)/2" ], "Fz": [ "-sin(u)/2" ], "Name": [ "Dullo P" ], "Umax": [ "2*pi" ], "Umin": [ "0" ], "Vmax": [ "2*pi" ], "Vmin": [ "0" ] } },  
 +{ "Iso3D": { "Component": [ "Eistüte" ], "Fxyz": [ "(x^2+y^2)^3-4*x^2*y^2*(z^2+1)" ], "Name": [ "Eistüte" ], "Xmax": [ "10" ], "Xmin": [ "-10" ], "Ymax": [ "10" ], "Ymin": [ "-10" ], "Zmax": [ "10" ], "Zmin": [ "-10" ] } },  
 +{ "Param3D": { "Component": [ "Eistüte P" ], "Description": [ "Parametric Eistüte" ], "Fx": [ "sin(2*u)*sin(u)*sqrt(v^2+1)" ], "Fy": [ "sin(2*u)*cos(u)*sqrt(v^2+1)" ], "Fz": [ "v" ], "Name": [ "Eistüte P" ], "Umax": [ "2*pi" ], "Umin": [ "0" ], "Vmax": [ "10" ], "Vmin": [ "-10" ] } },  
 +{ "Iso3D": { "Component": [ "Helix" ], "Fxyz": [ "2*x^4+y^2*z^2-6*x^2" ], "Name": [ "Helix" ], "Xmax": [ "sqrt(3)" ], "Xmin": [ "-sqrt(3)" ], "Ymax": [ "3*sqrt(1.5)" ], "Ymin": [ "-3*sqrt(1.5)" ], "Zmax": [ "3*sqrt(1.5)" ], "Zmin": [ "-3*sqrt(1.5)" ] } },   
 +{ "Param3D": { "Component": [ "Helix_X++", "Helix_X+-", "Helix_X-+", "Helix_X--", "Helix_Y++", "Helix_Y+-", "Helix_Y-+", "Helix_Y--", "Helix_Z++", "Helix_Z+-", "Helix_Z-+", "Helix_Z--" ], "Description": [ "Parametric Helix" ], "Fx": [ "sqrt(1.5+sqrt(2.25-u^2*v^2))", "sqrt(1.5-sqrt(2.25-u^2*v^2))", "-sqrt(1.5+sqrt(2.25-u^2*v^2))", "-sqrt(1.5-sqrt(2.25-u^2*v^2))", "sqrt(1.5*(1+cos(u)))", "sqrt(1.5*(1+sin(u)))", "-sqrt(1.5*(1+sin(u)))", "-sqrt(1.5*(1+cos(u)))", "sqrt(1.5*(1+sin(u)))", "sqrt(1.5*(1+cos(u)))", "-sqrt(1.5*(1+cos(u)))", "-sqrt(1.5*(1+sin(u)))" ], "Fy": [ "v", "u", "u", "v", "sqrt(1.5)*v", "sqrt(1.5)*v", "sqrt(1.5)*v", "sqrt(1.5)*v", "sqrt(1.5)*cos(u)/v", "sqrt(1.5)*sin(u)/v", "sqrt(1.5)*sin(u)/v", "sqrt(1.5)*cos(u)/v" ], "Fz": [ "u", "v", "v", "u", "sqrt(1.5)*sin(u)/v", "sqrt(1.5)*cos(u)/v", "sqrt(1.5)*cos(u)/v", "sqrt(1.5)*sin(u)/v", "sqrt(1.5)*v", "sqrt(1.5)*v", "sqrt(1.5)*v", "sqrt(1.5)*v" ], "Name": [ "Helix P" ], "Umax": [ "sqrt(1.5)", "sqrt(1.5)", "sqrt(1.5)", "sqrt(1.5)", "2*pi", "2*pi", "2*pi", "2*pi", "2*pi", "2*pi", "2*pi", "2*pi" ], "Umin": [ "-sqrt(1.5)", "-sqrt(1.5)", "-sqrt(1.5)", "-sqrt(1.5)", "0", "0", "0", "0", "0", "0", "0", "0" ], "Vmax": [ "sqrt(1.5)", "sqrt(1.5)", "sqrt(1.5)", "sqrt(1.5)", "3", "-1", "3", "-1", "3", "-1", "3", "-1" ], "Vmin": [ "-sqrt(1.5)", "-sqrt(1.5)", "-sqrt(1.5)", "-sqrt(1.5)", "1", "-3", "1", "-3", "1", "-3", "1", "-3" ] } },  
 +{ "Iso3D": { "Component": [ "Herz" ], "Fxyz": [ "x^2*z^2+z^4-y^2-z^3" ], "Name": [ "Herz" ], "Xmax": [ "3" ], "Xmin": [ "-3" ], "Ymax": [ "2.7" ], "Ymin": [ "-2.7" ], "Zmax": [ "3.5" ], "Zmin": [ "-2.5" ] } },  
 +{ "Param3D": { "Component": [ "HerzPolar_+", "HerzPolar_-" ], "Description": [ "Herz parametrized polar" ], "Fx": [ "0.5*v*sin(u)", "0.5*v*cos(u)" ], "Fy": [ "0.5*sqrt(v^2-1)*(1+v*cos(u))", "-0.5*sqrt(v^2-1)*(1+v*sin(u))" ], "Fz": [ "0.5*(1+v*cos(u))", "0.5*(1+v*sin(u))" ], "Name": [ "Herz polar" ], "Umax": [ "2*pi", "2*pi" ], "Umin": [ "0", "0" ], "Vmax": [ "2", "2" ], "Vmin": [ "1", "1" ] } },  
 +{ "Iso3D": { "Component": [ "HimmelHolle_01", "HimmelHolle_02" ], "Fxyz": [ "x-y*z", "x+y*z" ], "Name": [ "Himmel & Hölle" ], "Xmax": [ "1", "1" ], "Xmin": [ "-1", "-1" ], "Ymax": [ "1", "1" ], "Ymin": [ "-1", "-1" ], "Zmax": [ "1", "1" ], "Zmin": [ "-1", "-1" ] } },  
 +{ "Param3D": { "Component": [ "HimmerHolleP_01", "HimmerHolleP_02" ], "Description": [ "parametric Himmer & Hölle" ], "Fx": [ "u*v", "-u*v" ], "Fy": [ "u", "u" ], "Fz": [ "v", "v" ], "Name": [ "Himmer & Hölle P" ], "Umax": [ "1.2", "1.2" ], "Umin": [ "-1.2", "-1.2" ], "Vmax": [ "1.2", "1.2" ], "Vmin": [ "-1.2", "-1.2" ] } },  
 +{ "Iso3D": { "Component": [ "Kolibri" ], "Fxyz": [ "y^2*z^2+z^3-x^2" ], "Name": [ "Kolibri" ], "Xmax": [ "1" ], "Xmin": [ "-1" ], "Ymax": [ "1" ], "Ymin": [ "-1" ], "Zmax": [ "1" ], "Zmin": [ "-1" ] } },  
 +{ "Param3D": { "Component": [ "KolibriP" ], "Description": [ "parametrized Kolibri" ], "Fx": [ "u*(u^2-v^2)" ], "Fy": [ "v" ], "Fz": [ "u^2-v^2" ], "Name": [ "Kolibri P" ], "Umax": [ "1" ], "Umin": [ "-1" ], "Vmax": [ "1" ], "Vmin": [ "-1" ] } },  
 +{ "Iso3D": { "Component": [ "Kreisel" ], "Fxyz": [ "(60-x^2-y^2-z^2)^3-60*(x^2+y^2)*z^4" ], "Name": [ "Kreisel" ], "Xmax": [ "sqrt(60)" ], "Xmin": [ "-sqrt(60)" ], "Ymax": [ "sqrt(60)" ], "Ymin": [ "-sqrt(60)" ], "Zmax": [ "sqrt(60)" ], "Zmin": [ "-sqrt(60)" ] } },  
 +{ "Param3D": { "Component": [ "Kreisel_03", "Kreisel_04", "Kreisel_02", "Kreisel_01" ], "Description": [ "Kreisel parametrized polar" ], "Fx": [ "sqrt(60/(1+60*(-v^3+v^2)))*cos(u)", "sqrt(60/(1+60*(v^3+v^2)))*cos(u)", "sqrt(-60*v^3/(-v^3+60*(1-v)))*cos(u)", "sqrt(60*v^3/(v^3+60*(1+v)))*cos(u)" ], "Fy": [ "sqrt(60/(1+60*(-v^3+v^2)))*sin(u)", "sqrt(60/(1+60*(v^3+v^2)))*sin(u)", "sqrt(-60*v^3/(-v^3+60*(1-v)))*sin(u)", "sqrt(60*v^3/(v^3+60*(1+v)))*sin(u)" ], "Fz": [ "60*sqrt(-v^3/(1+60*(v^2-v^3)))", "-60*sqrt(v^3/(1+60*(v^3+v^2)))", "-60/sqrt(-v^3+60*(1-v))", "60/sqrt(v^3+60*(1+v))" ], "Name": [ "Kreisel polar" ], "Umax": [ "2*pi", "2*pi", "2*pi", "2*pi" ], "Umin": [ "0", "0", "0", "0" ], "Vmax": [ "0", "0.25", "0", "4" ], "Vmin": [ "-0.25", "0", "-4", "0" ] } },{ "Iso3D": { "Component": [ "Miau" ], "Fxyz": [ "x^2*y*z+x^2*z^2+2*y^3*z+3*y^3" ], "Name": [ "Miau" ], "Xmax": [ "5" ], "Xmin": [ "-5" ], "Ymax": [ "5" ], "Ymin": [ "-5" ], "Zmax": [ "5" ], "Zmin": [ "-5" ] } },   
 +{ "Iso3D": { "Component": [ "Nepali" ], "Fxyz": [ "(x*y-z^3-1)^2-(1-x^2-y^2)^3" ], "Name": [ "Nepali" ], "Xmax": [ "1" ], "Xmin": [ "-1" ], "Ymax": [ "1" ], "Ymin": [ "-1" ], "Zmax": [ "0" ], "Zmin": [ "-1.26" ] } },  
 +{ "Param3D": { "Component": [ "Nepali Polar" ], "Description": [ "Nepali parametrized polar" ], "Fx": [ "sin(v)*cos(u)" ], "Fy": [ "sin(v)*sin(u)" ], "Fz": [ "-(-(sin(v)^2*sin(2*u)/2-1+cos(v)^3))^(1/3)" ], "Name": [ "Nepali polar" ], "Umax": [ "2*pi" ], "Umin": [ "0" ], "Vmax": [ "pi" ], "Vmin": [ "0" ] } }, 
 +{ "Iso3D": { "Component": [ "Seepferdchen" ], "Fxyz": [ "(x^2-y^3)^2-(x+y^2)*z^3" ], "Name": [ "Seepferdchen" ], "Xmax": [ "25" ], "Xmin": [ "-25" ], "Ymax": [ "15" ], "Ymin": [ "-15" ], "Zmax": [ "25" ], "Zmin": [ "-25" ] } },  
 +{ "Iso3D": { "Component": [ "Solitude" ], "Fxyz": [ "x^2*y*z+x*y^2+y^3+y^3*z-x^2*z^2" ], "Name": [ "Solitude" ], "Xmax": [ "25" ], "Xmin": [ "-25" ], "Ymax": [ "25" ], "Ymin": [ "-25" ], "Zmax": [ "25" ], "Zmin": [ "-25" ] } },  
 +{ "Iso3D": { "Component": [ "Tanz" ], "Fxyz": [ "2*x^4-x^2-y^2*z^2" ], "Name": [ "Tanz" ], "Xmax": [ "25" ], "Xmin": [ "-25" ], "Ymax": [ "25" ], "Ymin": [ "-25" ], "Zmax": [ "25" ], "Zmin": [ "-25" ] } },  
 +{ "Param3D": { "Component": [ "TanzP_+", "TanzP_-" ], "Description": [ "parametrized Tanz" ], "Fx": [ "sqrt(1+sqrt(1+2*u^2*v^2))/2", "-sqrt(1+sqrt(1+2*u^2*v^2))/2" ], "Fy": [ "u/sqrt(2)", "u/sqrt(2)" ], "Fz": [ "v/sqrt(2)", "v/sqrt(2)" ], "Name": [ "Tanz P" ], "Umax": [ "25", "25" ], "Umin": [ "-25", "-25" ], "Vmax": [ "25", "25" ], "Vmin": [ "-25", "-25" ] } }, 
 +{ "Iso3D": { "Component": [ "Taube" ], "Fxyz": [ "256*z^3-128*x^2*z^2+16*x^4*z+144*x*y^2*z-4*x^3*y^2-27*y^4" ], "Name": [ "Taube" ], "Xmax": [ "25" ], "Xmin": [ "-25" ], "Ymax": [ "25" ], "Ymin": [ "-25" ], "Zmax": [ "25" ], "Zmin": [ "-25" ] } },  
 +{ "Param3D": { "Component": [ "TaubePs_1", "TaubePs_2", "TaubePs_3", "TaubePs_4" ], "Description": [ "Parametric Taube" ], "Fx": [ "3*(u^2-v^2)", "-3*(u^2+v^2)", "-3*(u^2+v^2)", "3*(v^2-u^2)" ], "Fy": [ "2*v*(3*u^2-v^2)", "-2*v*(3*u^2+v^2)", "2*u*(3*v^2+u^2)", "-2*u*(3*v^2-u^2)" ], "Fz": [ "3*u^2*v^2", "-3*u^2*v^2", "-3*u^2*v^2", "3*u^2*v^2" ], "Name": [ "Taube Ps" ], "Umax": [ "2", "2", "2", "2" ], "Umin": [ "0", "0", "0", "0" ], "Vmax": [ "2", "2", "2", "2" ], "Vmin": [ "0", "0", "0", "0" ] } },  
 +{ "Iso3D": { "Component": [ "Tulle_01", "Tulle_02", "Tulle_03" ], "Fxyz": [ "x^2+y-z", "y", "z" ], "Name": [ "Tulle" ], "Xmax": [ "2", "2", "2" ], "Xmin": [ "-2", "-2", "-2" ], "Ymax": [ "2", "2", "2" ], "Ymin": [ "-2", "-2", "-2" ], "Zmax": [ "2", "2", "2" ], "Zmin": [ "-2", "-2", "-2" ] } },  
 +{ "Param3D": { "Component": [ "TulleP_01", "TulleP_02", "TulleP_03" ], "Description": [ "parametrized Tulle" ], "Fx": [ "v", "u", "u" ], "Fy": [ "0.5*(u-v^2)", "0", "v" ], "Fz": [ "0.5*(u+v^2)", "v", "0" ], "Name": [ "Tulle P" ], "Umax": [ "1", "1", "1" ], "Umin": [ "-1", "-1", "-1" ], "Vmax": [ "1", "1", "1" ], "Vmin": [ "-1", "-1", "-1" ] } }, 
 +{ "Iso3D": { "Component": [ "Zeek" ], "Fxyz": [ "x^2+y^2-z^3*(1-z)" ], "Name": [ "Zeek" ], "Xmax": [ "0.1875*sqrt(3)" ], "Xmin": [ "-0.1875*sqrt(3)" ], "Ymax": [ "0.1875*sqrt(3)" ], "Ymin": [ "-0.1875*sqrt(3)" ], "Zmax": [ "1" ], "Zmin": [ "0" ] } },  
 +{ "Param3D": { "Component": [ "Zeek Polar" ], "Description": [ "Parametric Zeek" ], "Fx": [ "sin(v)*cos(v)^3*cos(u)" ], "Fy": [ "sin(v)*cos(v)^3*sin(u)" ], "Fz": [ "cos(v)^2" ], "Name": [ "Zeek Polar" ], "Umax": [ "pi/2" ], "Umin": [ "-pi/2" ], "Vmax": [ "pi/2" ], "Vmin": [ "-pi/2" ] } },  
 +{ "Iso3D": { "Component": [ "Spitz" ], "Fxyz": [ "(y^2-x^2-z^2)^3-27*x^2*y^3*z^2" ], "Name": [ "Spitz" ], "Xmax": [ "2" ], "Xmin": [ "-2" ], "Ymax": [ "2" ], "Ymin": [ "-2" ], "Zmax": [ "2" ], "Zmin": [ "-2" ] } },  
 +{ "Param3D": { "Component": [ "SpitzPolar_+", "SpitzPolar_-" ], "Description": [ "Parametric Spitz" ], "Fx": [ "4*v^3*cos(u)", "4*v^3*cos(u)" ], "Fy": [ "6*v^2*(sin(2*u)^2)^(1/3)+sqrt(4*v^2*(sin(2*u)^4)^(1/3)+16*v^6)", "6*v^2*(sin(2*u)^2)^(1/3)-sqrt(4*v^2*(sin(2*u)^4)^(1/3)+16*v^6)" ], "Fz": [ "4*v^3*sin(u)", "4*v^3*sin(u)" ], "Name": [ "Spitz Polar" ], "Umax": [ "2*pi", "2*pi" ], "Umin": [ "0", "0" ], "Vmax": [ "1.5874", "1.5874" ], "Vmin": [ "0", "0" ] } },  
 +{ "Iso3D": { "Component": [ "Schneeflocke" ], "Fxyz": [ "x^3+y^2*z^3+y*z^4" ], "Name": [ "Schneeflocke" ], "Xmax": [ "1" ], "Xmin": [ "-1" ], "Ymax": [ "1" ], "Ymin": [ "-1" ], "Zmax": [ "1" ], "Zmin": [ "-1" ] } },  
 +{ "Param3D": { "Component": [ "SchneeflockePX_1", "SchneeflockePX_2", "SchneeflockePX_3", "SchneeflockePX_4" ], "Description": [ "Parametric Schneeflocke" ], "Fx": [ "(u-v)*(u*v)^(1/3)", "-(u-v)*(-u*v)^(1/3)", "(u-v)*(u*v)^(1/3)", "-(u-v)*(-u*v)^(1/3)" ], "Fy": [ "u", "u", "u", "u" ], "Fz": [ "v-u", "v-u", "v-u", "v-u" ], "Name": [ "Schneeflocke P X" ], "Umax": [ "2", "0", "0", "2" ], "Umin": [ "0", "-2", "-2", "0" ], "Vmax": [ "2", "2", "0", "0" ], "Vmin": [ "0", "0", "-2", "-2" ] } }  
 +] } </code>
 ===== Tutoriel : Comment construire le modèle stl d'une surface algébrique ===== ===== Tutoriel : Comment construire le modèle stl d'une surface algébrique =====
 Voyons comment construire un modèle à partir de sa formule en utilisant l'exemple de Kolibri. Voyons comment construire un modèle à partir de sa formule en utilisant l'exemple de Kolibri.
/home/resonancg/www/wiki/data/pages/projets/surfaces/accueil.txt · Dernière modification: 2016/02/01 14:19 de resonance